Determinación de la fracción volátil en miel de abeja específica
Contenido principal del artículo
Resumen
Los compuestos volátiles de la miel de abejas son los principales componentes que le otorgan sabor y aroma distintivos. Estos compuestos son aportados por el néctar o la secreción que da origen a una determinada miel de abejas. Desde el siglo pasado se han identificado diferentes compuestos volátiles que resultan marcadores específicos para cada floración y por tanto para una miel de abejas determinada. En la actualidad una de las técnicas que más se emplean en la determinación de compuesto volátiles en miel de abejas es la microextracción en fase sólida en el espacio cabeza de la muestra. El análisis posterior se realiza por cromatografía gaseosa acoplada a espectrofotometría de masa. En Cuba, son pocos los trabajos que se han realizado en este ámbito, por lo que se desconocen los marcadores botánicos de la mayoría de las mieles específicas.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes de la Licencia CC Reconocimiento-NoComercial 4.0 Internacional (CC BY-NC 4.0):
Usted es libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia.
Bajo las condiciones siguientes:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
La revista no se responsabiliza con las opiniones y conceptos emitidos en los trabajos, son de exclusiva responsabilidad de los autores. El Editor, con la asistencia del Comité de Editorial, se reserva el derecho de sugerir o solicitar modificaciones aconsejables o necesarias. Son aceptados para publicar trabajos científico originales, resultados de investigaciones de interés que no hayan sido publicados ni enviados a otra revista para ese mismo fin.
La mención de marcas comerciales de equipos, instrumentos o materiales específicos obedece a propósitos de identificación, no existiendo ningún compromiso promocional con relación a los mismos, ni por los autores ni por el editor.
Cómo citar
Referencias
Acevedo, F., Torres, P., Oomah, B. D., Alencar, S. M. d., Mas-sarioli, A. P., Martín-Venegas, R., . . . Rubilar, M. (2017). Vol-atile and non-volatile/semi-volatile compounds and in vitro bioactive properties of Chilean Ulmo (Eucryphia cordifolia Cav.) honey. Food Research International, 94, 20-28. doi:10.1016/j.foodres.2017.01.021
Albaridi, N. A. (2019). Antibacterial potency of honey. Inter-
Alissandrakis, E., Daferera, D., Tarantilis, P. A., Polissiou, M., & Harizanis, P. C. (2003). Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chemistry, 82, 575–582. doi:10.1016/S0308-8146(03) 00013-X
Ampuero, S., Bodganov, S., & Bosset, J. O. (2004). Classifica-tion of unifloral honeys with an MS-based electronic nose using different sampling modes SHS SPME and INDEX. Euro-pean Food Research Technology, 218, 194–207. doi:10.1007/ s00217-003-0834-9
Apicultural Research, 1-7. doi:10.1080/00218839.2021.1917860
Balkanska, R., Stefanova, K., & Grigorova, R. S. (2020). Main honey botanical components and techniques for identifica-tion: a review. Journal of Apicultural Research, 59(5), 852-
Bianchi, F., Careri, M., & Musci, M. (2005). Volatile norisopre-noids as markers of botanical origin of Sardinian strawberry-tree (Arbutus unedo L.) honey: Characterisation of aroma compounds by dynamic headspace extraction and gas chro-matography–mass spectrometry. Food Chemistry, 89, 527–
Bicchi, C., Belliardo, F., & Frattini, C. (1983). Identification of the volatile components of some Piedmontese honeys. Jour-nal of Apicultural Research, 22(2), 130-136. doi:10.1080/00218839.1983.11100574
Blank, I. (2002). Gas Chromatography–Olfactometry in food aroma analysis. In R. Marsili (Ed.), Flavor, fragance, and odor (pp. 297-331). Basel, Switzerland: Marcel Dekker, Inc.
Bouseta, A., & Collin, S. (1995). Optimized Likens-Nickerson methodology for quantifying honey flavors. Journal of Agri-cultural and Food Chemistry, 43(7), 1890-1897. doi:10.1021/ jf00055a025
Bouseta, A., Collin, S., & Dufour, J.-P. (1992). Characteristic aroma profiles of unifloral honeys obtained with a dynamic headspace GC–MS system. Journal of Apicultural Research, 32(2), 96-109. doi:10.1080/00218839.1992.11101268
Čačić, F., Primorac, L., Kenjerić, D., Benedetti, S., & Mandić, M. L. (2009). Application of electronic nose in honey geo-graphical origin characterisation. Journal of Central Europe-an Agriculture, 10(1), 19-26. doi:10.5513/jcea.v10i1.745
Ceballos, L., & Pino, J. A. (2005). Application of solid-phase microextraction in the analysis of fruit and vegetables vola-tile compounds. Ciencia y Tecnologia de Alimentos, 3(15), 65-71.
Ceballos, L., Pino, J. A., Quijano-Celis, C. E., & Dago, A. (2010). Optimization of a HS-SPME/GC-MS method for deter-mination of volatile compounds in some Cuban unifloral hon-eys Journal of Food Quality, 33(4), 507–528. doi:10.1111/ j.1745-4557.2010.00330.x
Consonni, R., & Cagliani, L. R. (2015). Recent developments in honey characterization. Royal Society of Chemistry Advances, 5(73), 59696–59714. doi:10.1039/C5RA05828G
Costa, A. C. V., Garruti, D. S., & Madruga, M. S. (2019). The power of odour volatiles from unifloral melipona honey eval-uated by gas chromatography–olfactometry Osme techniques. Journal of the Science of Food and Agriculture, 99(9), 4493–4497. doi:10.1002/jsfa.9647
Council Directive 2001/110/EC of 20 December 2001 relating to honey, L10 C.F.R. (2002).
Crane, E. E. (1999). The World History of Beekeeping and Hon-ey Hunting. ISBN 978-1-136-74669-7: Routledge.
Cuevas-Glory, L. F., Pino, J. A., Santiago, L. S., & Sauri-Duch, E. (2007). A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry, 103(3), 1032-1043. doi:10.1016/j.foodchem.2006.07.068
De-Melo, A. A. M., Almeida-Muradian, L. B. d., Sancho, M. T., & Pascual-Maté, A. (2018). Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 57 (1), 5–37. doi:10.1080/00218839.2017.1338444
Der, W. V., Obbo, L. P., Pianna, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidolo-gie, 35, 18-25. doi:10.1051/apido:2004050
Dicle, S., Kuplulu, O., & Iplikcioglu, G. (2017). Detection of sul-fonamide and tetracycline antibiotic residues in turkish honey. International Journal of Food Properties, 20(1), 50-55. doi:10.1080/10942912.2017.1288135
Fuente, E. d. l., Martínez-Castro, I., & Sanz, J. (2005). Charac-terization of Spanish unifloral honeys by solid phase microex-traction and gas chromatography-mass spectrometry. Journal of Separation Science, 28, 1093–1100. doi:10.1002/ jssc.200500018
García, E. d. L. F. (2006). Avances metodológicos para la deter-minación de componentes de la miel mediante cromatografía de gases-espectrometría de masas. (Tesis Doctoral), Univer-sidad Autónoma de Madrid, Madrid.
Graddon, A. D., Morrison, J. D., & Smith, J. F. (1979). Volatile constituents of some unifloral Australian honeys. Journal of Agricultural and Food Chemistry, 27(4), 832-837. doi:10.1021/ jf60224a046
Graikou, K., Andreou, Α., & Chinou, I. (2021). Chemical profile of Greek Arbutus unedo honey: bilogical properties. Journal of
Grigoryan, K. (2016). Safety of honey. In A. Press (Ed.), Regu-lating safety of traditional and ethnic foods (pp. 217-246). Ar-menia: Elsevier Inc. .
Grosso, G. S., Tangarife, M. P. O., & Roberto, I. E. (2015). Perfil de componentes volátiles de mieles florales y monoflorales colombianas. Retrieved from Valencia, España:
Jerković, I., Tuberoso, C. I. G., Marijanović, Z., Jelić, M., & Kasum, A. (2009). Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chemistry, 1(112), 239-245. doi:10.1016/j.foodchem.2008.05.080
Karabagias, I. K., Badeka, A., & Kontominas, M. G. (2020). A decisive strategy for monofloral honey authentication using analysis of volatile compounds and pattern recognition tech-niques. Microchemical Journal(152), 1-9. doi:10.1016/ j.microc.2019.104263
Kaškonienė, V., & Venskutonis, P. R. (2010). Floral markers in honey of various botanical and geographic origins: A review. Comprehensive Reviews in Food Science and Food Safety, 9(6), 620–634. doi:10.1111/j.1541-4337.2010.00130.x
L. Castro-Vázquez, Díaz-Maroto, M. C., González-Viñas, M. A., & Pérez-Coello, M. S. (2009). Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chemistry, 112(4), 1022–1030. doi:10.1016/ j.foodchem.2008.06.036
Loza, R. E., Villarreal, P. P., & Cruz, M. A. H. (2020). Determi-nación del porcentaje de miel de flores y miel de mielada co-mercializadas en supermercados de la ciudad de La Paz. Re-vista Con-Ciencia, 8(2), 21-28.
Machado, A. M., Miguel, M. G., Vilas-Boas, M., & Figueiredo, A. C. (2020). Honey volatiles as a fingerprint for botanical origin. A review on their occurrence on monofloral honeys. Molecules, 25(374), 1-32. doi:10.3390/molecules25020374
Maignial, L., Pibarot, P., Bonetti, G., Chaintreau, A., & Marion, J. P. (1992). Simultaneous distillation-extraction under static vacuum: isolation of volatile compounds at room temperature. Journal of chromatography A, 606(1), 87-94. doi:10.1016/0021 -9673(92)85260-Z
Manyi-Loh, C. E., Ndip, R. N., & Clarke, A. M. (2011). Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activi-ties. International Journal of Molecular Sciences, 12(12), 9514-9532. doi:10.3390/ijms12129514
Maroto, M. C. D., & Coello, M. S. P. (2006). Análisis de los com-puestos responsables del aroma de las especias. Anales de la Real Sociedad Española de Química Real Sociedad Española de Química, 102(3), 31-35.
Mato, I., Huidobro, J. F., Simal-Lozano, J., & Sancho, M. T. (2006). Analytical methods for the determination of organic acids in honey. Critical Reviews in Analytical Chemistry, 36(1), 3-11. doi:10.1080/10408340500451957
Mena, D. D., Jiménez, M. G., & Berta, M. L. (2011). Imple-mentación del ensayo: análisis polínico para productos apíco-las. Apiciencia, 1-5.
Morales, M. T., Aparicio, R., & Gutiérrez, F. (1992). Técnicas de aislamiento y concentración de volátiles de aceites vegetales. Grasas Aceites, 43, 164-173.
national Journal of Microbiology, 1-10. doi:10.1155/2019/2464507
Oroian, M., Amariei, S., Leahu, A., & Gutt, G. (2015). Multi-element composition of honey as a suitable tool for its authen-ticity analysis. Polish Journal of Food and Nutrition Sciences, 65(2), 93–100. doi:10.1515/pjfns-2015-0018
Overton, S. V., & Manura, J. J. (1994). Flavor and aroma in natural bee honey. American Laboratory, 26(45), 47–53.
Paine, T. D., & Lieutier, F. (2016). Insects and diseases of Medi-terranean forest systems. Switzerland: Springer International Publishing.
Panseri, S., Manzo, A., Chiesa, L. M., & Giorgi, A. (2013). Melis-sopalynological and volatile compounds analysis of buckwheat honey from different geographical origins and their role in botanical determination. Journal of Chemistry, 1–11. doi:10.1155/2013/904202
Perkins, M. L., D’Arcy, B. R., Lisle, A. T., & Deeth, H. C. (2005). Solid phase microextraction of stale flavour volatiles from the headspace of UHT milk. Journal of the Science of Food and Agriculture, 85(14), 2421-2428. doi:10.1002/jsfa.2243
Pinho, O., Ferreira, I. M. P. L. V. O., & Santos, L. H. M. L. M. (2006). Method optimization by solid-phasemicroextraction in combination with gas chromatography with mass spectrome-try foranalysis of beer volatile fraction. Journal of chromatog-raphy A, 2(1121), 145-153. doi:10.1016/j.chroma.2006.04.013
Plutowska, B., Chmiel, T., Dymerski, T., & Wardencki, W. (2011). A headspace solid-phase microextraction method de-velopment and its application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126(3), 1288–1298. doi:10.1016/j.foodchem.2010.11.079
Quintana, J. B., & Rodríguez, I. (2006). Strategies for the mi-croextraction of polar organiccontaminants in water samples. Analytical and Bioanalytical Chemistry, 384(7), 1447-1461. doi:10.1007/s00216-005-0242-z
Ruisinger, B., & Schieberle, P. (2012). Characterization of the key aroma compounds in rape honey by means of the molecu-lar sensory science concept. Journal of Agricultural and Food Chemistry, 60(17), 4186–4194. doi:10.1021/jf3004477
Ruth, S. M. v. (2001). Methods for gas chromatography-olfactometry: a review. Biomolecular Engineering, 17(4-5), 121 –128. doi:10.1016/S1389-0344(01)00070-3
Schievano, E., Morelato, E., Facchin, C., & Mammi, S. (2013). Characterization of markers of botanical origin and other com-pounds extracted from unifloral honeys. Journal of Agricultural and Food Chemistry, 61(8), 1747-1755. doi:10.1021/jf302798d
Seisonena, S., Kivima, E., & Veneb, K. (2015). Characterisation of the aroma profiles of different honeys and corresponding flowers using solid-phase microextraction and gas chromatog-raphy–mass spectrometry/olfactometry. Food Chemistry, 169, 34–40. doi:10.1016/j.foodchem.2014.07.125
Serra, J. (1988). Determinación de antranilato de metilo en Ia miel de cítricos (Citrus sp.) del Levante Español, y su influencia en la actividad diastásica de la miel. Alimentaria: Revista de tecnología e higiene de los alimentos, 25(197), 37-40.
Siegmund, B., Urdl, K., Jurek, A., & Leitner, E. (2017). “More than Honey”: Investigation on volatiles from monovarietal honeys using new analytical and sensory approaches. Journal of Agricultural and Food Chemistry, 66(10), 2432–2442. doi:10.1021/acs.jafc.6b05009
Song, H., & Liu, J. (2018). GC-O-MS technique and its applica-tions in food flavor analysis. Food Research International, 114, 187-198. doi:10.1016/j.foodres.2018.07.037
Soria, A. C., González, M., Lorenzo, C. d., Martínez-Castro, I., & Sanz, J. (2005). Estimation of the honeydew ratio in honey samples from their physicochemical data and from their vola-tile composition obtained by SPME and GC-MS. Journal of the Science of Food and Agriculture, 85, 817-824. doi:10.1002/ jsfa.1890
Suárez, M. d. C. B. (2016). La Cromatografía de Gases-Olfatometría como herramienta en la evaluación del aroma de los alimentos. (Tesis de Licenciatura), Universidad de Sevilla, Sevilla, España.
Svecnjak, L., Prđun, S., Rogina, J., Bubalo, D., & Jerkovic, I. (2017). Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectar-to-honey transformation pathway using FTIR-ATR spectroscopy. Food Chemistry, 286–294.
Tan, S. T., Holland, P. T., Wilkins, A. L., & Molan, P. C. (1988). Extractives from New Zealand honeys. 1. White clover, manu-ka, and kanuka unifloral honeys. Journal of Agricultural and Food Chemistry, 36(3), 453-460. doi:10.1021/jf00081a012
Tan, S. T., Wilkins, A. L., Holland, P. T., & McGhie, T. K. (1989). Extractives from New Zealand unifloral honeys. 2. Degraded carotenoids and other substances from heather honey. Journal of Agricultural and Food Chemistry, 37(5), 1217-1221. doi:10.1021/jf00089a004
Tan, S. T., Wilkins, A. L., Holland, P. T., & McGhie, T. K. (1990). Extractives from New Zealand honeys. 3. Unifloral thyme and willow honey constituents. Journal of Agricultural and Food Chemistry, 39(9), 1833-1838. doi:10.1021/jf00099a010
Tananaki, C., Thrasyvoulou, A., Giraudel, J. L., & Montury, M. (2007). Determination of volatile characteristics of Greek and Turkish pine honey samples and their classification by using Kohonen self organising maps. Food Chemistry, 101(4), 1687-1693. doi:10.1016/j.foodchem.2006.04.042
Thrasyvoulou, A., & Bladenopoulou, S. (1984). A comparative study of Greek pine and blossom honey. Paper presented at the B’ National Beekeeping Gongress, Atenas.
Tsuneya, T., Shibai, T., Yoshioka, A., & Shiga, M. (1974). The study of shina (Tilia japonica Simk.) honey flavour. Koryo, 109, 29-34.
Vasića, V., Đurđića, S., Tostia, T., Radoičićb, A., Dražen Lušićc, Milojković-Opsenicaa, D., . . . Trifković, J. (2020). Two aspects of honeydew honey authenticity: Application of advance ana-lytical methods and chemometrics. Food Chemistry, 305, 125457. doi:10.1016/j.foodchem.2019.125457
Verzera, A., Campisi, S., Zappalà, M., & Bonaccorsi, I. (2001). SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin. American Laboratry, 33(15), 18–21.
Verzera, A., Tripodi, G., Condurso, C., Dima, G., & Marra, A. (2014). Chiral volatile compounds for the determination of orange honey authenticity. Food Control, 39, 237-243. doi:10.1016/j.foodcont.2013.11.012
Wardencki, W., Chmiel, T., Dymerski, T., Biernacka, P., & Plutowska, B. (2009). Application of gas chromatography, mass spectrometry and olfactometry for quality assessment of selected food products. Ecological Chemistry and Engi-neering, 16(3 ), 287-300.
White, J. W. (1975). Composition of honey. Londres, UK: Heinemann.
Wilkins, A. L., Lu, Y., & Tan, S.-T. (1993). Extractives from New Zealand honeys. 4. Linalool derivatives and other sub-stances from nodding thistle (Carduus nutans) honey. Journal of Agricultural and Food Chemistry, 41(6), 873-878. doi:10.1021/jf00030a006
Zapater, L. M. S. (2015). Caracterización de la fracción volátil de mieles de espliego y de tomillo comercializadas en la co-munidad valenciana. (Gestión de la Seguridad y Calidad Ali-mentaria Tesis de máster), Universidad Politécnica de Valen-cia, Valencia, España. Retrieved from http:// hdl.handle.net/10251/57771.